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Abstract— When attackers gain access to enterprise or corporate
networks by compromising authorized users, computers, or
applications, the network and its resources can be used to
perform distributed and coordinated attacks against third party
networks, or even on computers on the network itself. We are
working on a decentralized scheme to share alerts in a secure
multicast infrastructure to detect and prevent these kind of
attacks. In this paper we present a collaborative framework
that performs coordinated attack prevention. The detection and
prevention process itself is done by a set of collaborative entities
that correlate and assemble the pieces of evidence scattered over
the different network resources. We also provide an example of
how our system can detect and prevent a coordinated attack to
demonstrate the practicability of the system.

Index Terms— Intrusion Detection Systems, Publish-Subscribe
Systems, Alert Correlation.

I. INTRODUCTION

Despite the advances in network security technology, such as
perimeter firewalls, authentication mechanisms and intrusion
detection systems, networked systems have never been more
vulnerable than today. The proliferation of Internet access to
every network device, the increased mobility of these devices,
and the introduction of network-enabled applications have
rendered traditional network-based security infrastructures vul-
nerable to a new generation of attacks. Generally, these attacks
start with an intrusion to some corporate network through a
vulnerable resource and then launching further actions on the
network itself or against third party networks. Once harmless
hosts and devices have been compromised, they will become
active parts in the deployment of new attacks against other
networks if the administrator in charge for these resources
cannot effectively disarm them.

The use of distributed and coordinated techniques in these
kind of attacks is getting more common among the attacker
community, since it opens the possibility to perform more
complex tasks, such as coordinated port scans, distributed
denial of service (DDoS), etc. These techniques are also useful
to make their detection more difficult and, normally, these
attacks will not be detected by solely considering information

from isolated sources of the network. Different events and
specific information must be gathered from all sources and
combined in order to identify the attack. Information such
as suspicious connections, initiation of processes, addition of
new files, sudden shifts in network traffic, etc., have to be
considered.

According to [7], we can define the term attack as a
combination of actions performed by a malicious adversary
to violate the security policy of a target computer system or a
network domain. Therefore, we can define the attack detection
process as the sequence of elementary actions that should
be performed in order to identify and respond to an attack.
An intrusion detection system (IDS) is the most important
component in performing this process. As mentioned in [10],
an IDS has to fulfill the requirements of accuracy (it must not
confuse a legitimate action with an intrusion), performance
(its performance must be enough to carry out real-time intru-
sion detection), completeness (it should not fail to detect an
intrusion), fault tolerance (the IDS must itself be resistant to
attacks) and scalability (it must be able to process the worst-
case number of events without dropping information).

In this paper, we present an intrusion detection system
which provides a decentralized solution to prevent the use of
network resources to perform coordinated attacks against third
party networks. Our system includes a set of cooperative enti-
ties (called prevention cells) which are lodged inside resources
of the network. These entities collaborate to detect when the
resources where they are lodged are becoming an active part
of a coordinated attack. The main difference between our
proposal and other related work is that each node that lodges
a prevention cell is expected to be the source of one of the
different steps of a coordinated attack, not its destination.

The rest of this paper is organized as follows. Section II
presents some related work on the detection of distributed
attacks. Our system is presented in Section III and its alert
correlation mechanism is introduced in Section IV. The uti-
lization of our system inside a real scenario is described in
Section V. Finally, conclusions and further work are placed in
the last section.



II. RELATED WORK

Currently, there is a great number of publications related to
the design of systems that detect and prevent coordinated and
distributed attacks. The major part of them are designed as
centralized or hierarchical systems that usually present a set of
problems associated with the saturation of the service offered
by centralized or master domain analyzers.

As shown in [2], centralized systems, such as DIDS [22],
and NADIR [14], process their data in a central node despite
their distributed data collection. Thus, these schemes are
straightforward as they simply place the data at a central
node and perform the computation there. On the other hand,
hierarchical approaches, such as GrIDS [23], Emerald [20],
AAFID [2], and NetSTAT [25], have a layered structure
where data is locally preprocessed and filtered. Although they
mitigate some weaknesses present at centralized schemes,
they still carry out bottleneck, scalability problems and fault
tolerance vulnerabilities at the root level.

In contrast to these traditional architectures, alternative
approaches such as Micael [9], IDA [1], Sparta [17], and
MAIDS [13], propose the use of mobile agent technology
to gather the pieces of evidence of an attack (which are
scattered over arbitrary locations). The idea of distributing
the detection process to different mobile agents has some
advantages regarding centralized and hierarchical approaches.
For example, these schemes keep the whole system load
relatively low and the consumption of the needed resources
takes place only where the agents are running. Furthermore,
agents are also able to react very quickly when an intrusion
has been discovered.

Mobile agent systems and mobile code may seem to be a
promising technology to implement decentralized architectures
for the detection of coordinated attacks, but the current sys-
tems present very simplistic designs and suffer from several
limitations. For instance, in most approaches the use of agent
technology and mobility is unnecessary and counterproductive.
According to [16], mobile agents are used in these designs
simply as data containers, a task that can be performed more
efficiently by using a simple message passing. Furthermore,
mobile agents introduce additional security risks and cause a
performance penalty without providing any clear advantage.
None of the proposals based on mobile agent technology
seem to have a definitive implementation or any industrial
application.

Some message passing designs, such as Quicksand [16] and
Indra [15], try to eliminate the need for dedicated elements
by introducing a message passing infrastructure. Instead of
having a central monitoring station to which all data has to be
forwarded, there are independent uniform working entities at
each host performing similar basic operations. In order to be
able to detect coordinated and distributed attacks, the different
entities have to collaborate on the intrusion detection activities
and cooperate to perform a decentralized correlation algorithm.
These architectures have the advantage that no single point of
failure or bottlenecks are inherent in their design.

III. PREVENTION CELLS SYSTEM

In this section we present the design of a system whose main
purpose is to detect and prevent coordinated attacks. By means
of a set of entities which will be lodged inside the network, the
system will prevent the use of network resources to perform
coordinated attacks against third party networks. The aim of
this system is not to detect incoming attacks against these
entities, but to detect when these nodes are the source of one
of the several steps of a coordinated attack and to avoid it.

The design of our system has two main goals. The first
one is to obtain a modular architecture composed of a set of
cooperative entities. These entities will collaborate to detect
when the resources where they are lodged are becoming an
active part of a coordinated attack against the network they
are located at, or against a third party network. Once an attack
has been detected, they must be able to prevent the use of
their associated resources to finally avoid their participation
on the detected attack. The second goal is to have a complete
uncoupled relationship between the different components that
are these cooperative entities. Having accomplished this, we
will be able to distribute these components according to the
needs of each resource we want to disarm.

The remainder of this section is organized as follows.
First, we present the essential features of the communication
architecture of this system and the model used to design it.
Then, we describe the elements that make up the different
nodes of this architecture.

A. Multicast Communication Architecture

To achieve the first design goal listed above, a multicast
architecture is proposed for the communication between the
cooperative entities. Through this multicast communication
architecture, each one of these entities, called prevention cells,
will exchange a set of cooperative messages to collaborate
in the decentralized detection process (Figure 1(a)). This
architecture must also provide security mechanisms to avoid
communication attacks and permit the identification of the
different components (like the security mechanisms of the
multicast infrastructure introduced in Section VI-D). To do
that, we propose the use of a publish-subscribe model.

According to [12], a publish-subscribe system consists of
brokers and clients that are connected to brokers. The brokers
themselves form the infrastructure used for the routing of
notifications. Clients can publish notifications and subscribe
to filters that are matched against the notifications passing
through the broker network. If a broker receives a new notifi-
cation it checks if there is a local client that has subscribed to
a filter this notification matches. If so, the message is delivered
to this client.

The key feature of this model is that components do not
know the name or even the existence, of listeners that receive
events that they publish. Some other advantages in using a
publish-subscribe model for our proposal are the easy imple-
mentation of the add and remove operations for components,
as much as the introduction of new kind of notifications, the
registration of new listeners, and the modification of the set
of publishers for a given type of notification.
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Fig. 1. Collaborative architecture based on prevention cells

B. Prevention Cells

Taking into account the advantages of the publish-subscribe
model discussed above, this model is also useful to achieve the
independence between components that we have announced as
the second goal. Thus, we also propose the use of the publish-
subscribe model for the relationship between the internal
elements of each prevention cell. By using this model, all
of them will be able to produce and consume messages on
a secure shared bus.

The internal elements of each prevention cell have been
proposed according to the basic components of any IDS,
that is, sensors, analyzers, managers, and response units. The
messages exchanged between these components are three:
events (between sensors and analyzers), alerts (between an-
alyzers and managers), and actions (between managers and
response units). These components, and the different messages
exchanged between them (Figure 1(b)), are described below:

� Sensors, that look for suspicious data on the host or over
the network where they are installed and publish this
information to a specific event scope (where associated
analyzers can subscribe). We propose the use of network
based sensors and host based sensors.

� Analyzers, that listen to the events published by sensors,
to perform a low level correlation process. Thus, these
components will consume events and produce local alerts
inside the prevention cell. After that, they will publish
these alerts at the corresponding scope (the local alert
scope).
We propose the use of misuse based analyzers, with a
priori knowledge of sequences and activities of different
attacks, and the use of anomaly based analyzers to

identify malicious activity comparing the events listened
against the representation of normal activities.

� Correlation manager, that listens for local and external
alerts on their specific scopes and uses the data consumed
against its associated coordinated attack scenarios. It will
perform a higher correlation process and will be involved
in the relative part of the correlation process explained in
Section IV. It is also responsible for publishing correlated
and assessment alerts.

� Database manager, that listens to all of the alert scopes
to consume all the alerts produced inside and outside the
prevention cell. It will store all these alerts on the local
database where it is installed.

� Cooperation manager, that listens for cooperative alerts
published outside the prevention cell where it is installed
and publishes external alerts inside the prevention cell.
Furthermore, it also subscribes to correlated alerts and
publishes cooperative alerts outside the prevention cell.

� Counter measure managers, that listen for assessment
alerts published by the correlation manager inside the
prevention cell. These managers will be responsible for
consuming the assessment alerts and transforming them
into the correct actions which will be sent to the associ-
ated response units.

� Response Units, that take actions produced by their as-
sociated counter measure manager to initiate them. Each
action is generated to prevent one of the different steps
of the detected coordinated attack, and will be performed
against the node where the prevention cell is installed.
We propose the use of network and host based response
units.



IV. CORRELATION OF ALERTS

Correlating information held by multiple intrusion detection
systems is an approach that has been discussed in several
papers. However the goal aimed by those approaches are
different and need to be explained.

With the rise of cooperative or distributed intrusion detec-
tion frameworks, the problem of reasoning on information
coming from multiple sources spread across the monitored
system is very important. Correlating this information allows
to fulfill different goals, such as information redundancy and
scenario detection.

The notion of alert correlation as the process of aggregating
alerts related to the same event has been studied in [11],
[24], and [4]. They define a similarity relationship between
alert attributes to aggregate alerts. The second main approach
of alert correlation as the process of detecting scenarios of
alerts has been discussed in [19], [5], and [3]. In our proposal
we use the latter approach, introducing the notion of alert
correlation as the process of finding a set of alerts in the
stream of intrusion detection alerts organized into a scenario.
Our formalism is explained below.

A. Modeling Actions and Objectives

From the attacker point of view, the attack process can be
seen as a planning activity [5]. The intruder can have some
knowledge of the system he wants to attack, probably knowing
the vulnerabilities present or software and hardware used. If
the attacker has a limited knowledge about the targeted system,
he can try to gather information by executing actions such as
ports scans or using other vulnerability detection tools. Once
the attacker has sufficient knowledge of the system to attack,
he can define a set of reachable attack objectives.

From the point of view of the victim, those attack objectives
constitute a violation of the security policy. In order to reach
those attack objectives, the attacker select a set of actions
constituting one or multiple scenarios of actions. Finally, from
the detection point of view, we want to detect the coordinated
attack by constructing scenarios of alerts corresponding to the
scenarios of actions executed by the attacker. Hence, we have
to model the set of actions available for the attacker and the
set of attack objectives. Since we want to react to the detection
of ongoing scenarios, we have to model the set of available
counter measures.

We use the LAMBDA language [7] to model the actions
of the coordinated attacks. LAMBDA provides a logical and
generic description of actions, but we use it to model as well
the attack objectives and the counter measures. A LAMBDA
description of an action is composed mainly of the following
attributes:

� pre-condition: defines the state of the system needed in
order to achieve the action.

� post-condition: defines the state of the system after the
execution of the action.

Let us consider the modeling of the BIND Birthday Attack.
This coordinated attack tries to perform a DNS cache poison-
ing by sending a sufficient number of queries to a vulnerable
DNS server based on the BIND software, while sending an

equal number of false replies at the same time. A reason for
the generation of multiple queries for the same domain name
at the same time, could be an attacker trying to hit the needed
transaction ID to perform a DNS cache poisoning. Since the
transaction ID function is a pseudo-random function, we can
supply the brute-force birthday attack based on the birthday
paradox.

This attack will result in the storage of an illegal recursive
query using the coordination of three techniques. First, a DoS
attack to keep the authoritative DNS server from being able
to reply. Second, a flooding of queries to an ISP DNS server
asking for the IP address of the domain name to be hijacked.
And third, a second flooding with the same number of replies
formulated by spoofing the IP address of the authoritative DNS
server (this way it looks like if these replies were sent from the
legitimate nameserver). The attacker avoids the authoritative
reply by the first action (the denial of service). If the attack
is successful, the targeted ISP DNS will cache the spoofed
record for the time indicated in the TTL section of the reply.
At this point, the attack is over, but the effect persists for the
time the ISP holds the phony record in its nameserver cache.
The victim at the ISP is exposed to the spoofed information
any time it makes a query for the domain name in question.
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Fig. 2. Modeling the BIND Birthday Attack objective and actions

Figure 2 presents the models for each action that composes
the BIND Birthday Attack scenario represented using the
LAMBDA language. We also model the attack objective for
this scenario as a condition on the system state.

B. Detecting Scenarios

In order to detect the coordinated attack scenario, we use the
notion of correlation as the process of finding a set of alerts
into the stream of alerts organized into a scenario. To do that,
the correlation engine will perform action correlation and alert
correlation:

� Action Correlation - Two actions D and E are correlated
when the realization of D has a positive influence on
the realization of E (given that D occurred before E ).
More formally, if FHG/I�J�K�DML is the set of post-conditions



of action D and F���� K�E L is the set of pre-conditions of
action E , we say that D and E are directly correlated if
the following conditions are satisfied:

��� ! and
���

such that:

– K � !
	 FHG/I>J�K�DML�� ��� 	 F��� K�E L�L or K��<G8J�K � ! L 	
FCG/I�J�K�D L����<G8J�K ��� L 	 F��� K�E L L

–
� ! and

���
are unifiable through a most general

unifier � .

Similarly we define the notion of correlation between an
action and an attack objective. In this case we correlate
the post-condition of an action and the state condition
of an objective. The attack objective is modeled as a
condition on the system state (Figure 2).

� Alert Correlation - Once all the actions available for the
attacker have been modeled, we can generate the set of
unifiers between all the actions. This generation is done
off-line. When an alert is received, we have to bind this
alert to an action model and then check for a unifier
between the new alert and the already received alerts.

This set of unifiers is also used to anticipate the possible
actions we may see after having observed the beginning
of a scenario. Those hypothetic observations are called
virtual actions.

C. Reacting on Detected Scenarios

Detecting the coordinated attack scenario is interesting but
it does not prevent the attacker from reaching his objective.
Therefore, we need a mechanism to be able to decide when to
execute a counter measure once the scenario has been partially
observed and that the next expected action can be blocked
through an anti-correlated action:

� Anti-correlation - Two actions D and E are anti-
correlated when the realization of D has a negative
influence on the realization of E (given that D occurred
before E ). More formally, if FCG/I�J�K�D L is the set of
post-conditions of action D and F��� K�E L is the set of
pre-conditions of action E , we say that D and E are
directly anti-correlated if the following conditions are
satisfied:

��� ! and
���

such that:

– K��<G8J�K � ! L 	 FCG/I�J�K�DML�� � � 	 F��� K�E L�L or K � ! 	
FCG/I�J�K�D L����<G8J�K � � L 	 F��� K�E L L

–
� ! and

� �
are unifiable through a most general

unifier � .

From the modeling point of view, the models for counter
measures are not different from the ones representing the set of
actions available for the intruder. Actually, a counter measure
is an action � anti-correlated with another action D , i.e, one
of the predicates in its post-condition is correlated with the
negation of one predicate in the pre-condition of action D .
This mechanism is provided by the correlation engine through
the use of the hypothesis generation mechanism [3]. Each time

a new alert is received, the correlation engine finds a set of
action models that can be correlated in order to form a scenario
leading to an attack objective. This set of hypothesis is then
instantiated into a set of virtual alerts. The correlation engine
then looks for actions models that can be anti-correlated with
the virtual actions. This set of anti-correlated actions becomes
the set of counter measures available for the hypothesis
represented by the partially observed scenario.
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Fig. 3. Modeling the BIND Birthday Attack counter measures

Figure 3 presents the models for each action representing the
available counter measures for the BIND Birthday Attack sce-
nario. The predicate �<G8J�K�������� - G�� - I���� ��!�"#� K%$�&.L�L in the post-
condition of action '��(� G - ������� - G�� - I������)!�"#� K�D+*,$�&-*.� � L is anti-
correlated with the predicate ������� - G�� - I������)!�"#� K%$�&�L . Similarly,
the predicate �<G8J�K#I FHG3G��/� � - "�G ���(� ".J�!�G �6K�D+*,$0&�*,$21�L�L of action354 G�"76 - I FHG3G��/� � - "�G ���(� ".J�!�G �6K�D+*,$0&-*,$21�L is anti-correlated with
the predicate I FHG3G��/� � - "�G ���(� ".J�!�G �6K�D+*,$0& *,$21�L of attack ob-
jective ! 4%4 �-8:9 4 - ����"#'��/I-!;�)� - < '=��� � K%$0&#*,>?*A@�B L .

V. PREVENTING THE BIND BIRTHDAY ATTACK

In this section we will discuss the prevention of the BIND
Birthday Attack scenario introduced above by using the pre-
vention cells system presented in this paper. This attack is
a good example to demonstrate how the components of our
architecture handle a possible coordinated attack.

The correlation and anti-correlation graph [6] for this co-
ordinated attack is shown in Figure 4(a). In the first step
of this model, A (the agent that performs the whole attack)
floods a given host $C1 . In the second step, A sends a flood
of DNS queries to host $�& to achieve, that the server process
on this host will launch a recursive query to discover the IP
address associated to the name > . Then, A starts flooding false
recursive replies spoofing the IP address of $01 . Since $C1 is
in a mute state, $0& will never receive the authoritative reply.
If one of the false replies has succeeded, $D& will store the
faked information in its cache.

The model of Figure 4(a) proposes two counter measures to
prevent the coordinated attack. First, as soon as the host which
is performing the SYN flooding DoS against $01 would detect
it, it will neutralize the attack by sending the same number of
RST TCP packets to $ 1 as SYN TCP packets having received.
Second, as soon as the host where the third action (the flooding
of spoofed replies to $ & ) is detected, it blocks these spoofed
connections.

To show how the components of our architecture would
handle the coordinated attack model described in Figure 4(a),
we consider the sequence of alerts described in Figure 4(b). We
assume that an attacker targeting the network victim.org
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5
):

  classification=flood-dns-queries

           source=pcell2

    destination=n2.victim.org

External alert(t
3
):

    classification=syn-flood

             source=pcell1

      destination=n1.victim.org

External alert(t
5
):

 classification=flood-dns-queries

           source=pcell2

     destination=n2.victim.org

Local alert(t
6
):

classification=flood-dns-replies

         source=n1.victim.org

  destination=n2.victim.org

Local alert(t
7
):

     classification=ip-spoofing

 spoofed-source=n1.victim.org

        destination=n2.victim.org

Assessment alert(t
8
):

  -block-spoofed-connection(pcell3,

                       n1.victim.org,

                       n2.victim.org)

Cooperative alert(t
9
):

 classification=illegal-recursive-dns-query

          source=pcell3

    destination=n2.victim.org

(b)

(c)

(a)

pcell2

pcell3

pcell1

(b) Sequence of alerts raised inside each prevention cell

Fig. 4. Preventing the BIND Birthday Attack by using the prevention cells system

will use resources from another corporate network to perform
the coordinated attack. This corporate network is protected
with our prevention cells system. The different parts of the
attack are detected by three protection cells, named pcell1,
pcell2, and pcell3 (see Figure 4(b)). For each prevention
cell we show the most relevant IDMEF compliant alerts [8]
published and consumed by components of the cell. We have
simplified quite a lot the information and format of each
alert for clarity reasons. For the same reason we assume the
correlation and anti-correlation graph for the BIND Birthday
Attack is not stored in the attack scenario database of the other
prevention cells. Each alert is denoted with ordered identifiers
J ) , which correspond to the DetectionTime field of the IDMEF
alert format.

The first indication of the attack is detected by sensors from
pcell1. The sensors detect the SYN flooding DoS and generate
the local alert JA& . This alert is received by the correlation
engine of the cell, which in turn generates the assessment
alert J.1 informing that the DoS needs to be neutralized. The
assessment alert is observed by the counter measure manager
of the prevention cell, which will signal a response unit to
block the DoS. Then, by means of the cooperative manager,
the prevention cell will send the cooperation alert J�� to the
other prevention cells of the system. This alert is received by
the other prevention cells as an external alert notifying that a
SYN flooding DoS attack against n1.victim.org has been
detected and prevented in pcell1.

At this point, the prevention cell pcell1 has prevented the
DoS attack against the host n1.victim.org, which is the
first step of the illegal recursive DNS query scenario. Never-
theless, we cannot ensure that the whole attack is frustrated.
It is reasonable to assume that the attacker will try to use
another resource not covered by the prevention cells system to
commit the final attack. Thus, it is important to try to detect
all the steps of the attack and to be able to correlate them
in order to identify the whole attack. The next step of the
attack, a flooding of DNS queries against n2.victim.org,
is detected by sensors of pcell2 that publish it as the local
alert J�� . The correlation manager of pcell2 consumes the alert
and produces a corresponding cooperative alert J�� . This alert
is sent to the other prevention cells, making them aware that
the flooding or DNS queries has been detected in pcell2.

Finally, the coordinated attack detection will be completed
when the attacker tries the flooding of spoofed replies on the
target system (n2.victim.org) from the host that lodges
the prevention cell pcell3. The sensors from pcell3 detect this
flooding and produce the local alerts J�� and J�� . These alerts,
together with the external alerts J�� and J � , are correlated by
the correlation engine of pcell3, resulting in the detection of
the coordinated illegal recursive DNS query. This detection
step will produce the assessment alert J�� to block the flooding
of spoofed connections. Furthermore, it also involves the
production of the cooperative alert J�	 to notify the system that
the illegal recursive DNS query scenario has been detected.



VI. CURRENT DEVELOPMENT

This section presents a brief overview of an implementation
of our prevention system and that deploys all the basic
components proposed in this paper. This platform has been
developed for GNU/Linux systems in C and C++. Our im-
plementation has been tested on different versions of Linux
2.4.x series and on the versions 2.9.x and 3.x of GNU’s gcc
compiler. The combination of free high-quality documentation,
development and network solutions provided by GNU/Linux
operating systems eased the analysis of requirements and the
development of this platform. Below, we introduce the main
components of our prototype.

A. Sensors and Response Units

Our prototype started with the design and implementation of a
set of sensors and response units embedded in the Linux 2.4.x
series as kernel modules. Even though, third party sensors
and third party response units could easily be integrated in
our platform. The implementation of the network sensors and
response units is based on the netfilter subsystem, a framework
for packet manipulation that enables packet filtering, network
address translation and other packet mangling on Linux 2.4.x
and upper series.

At this time, we have developed the following network
based sensors and response units: a sensor to detect stealth
scanning (syns s), a sensor to detect IP spoofing (spoof s), a
sensor to detect buffer overflows on the packet payload (bof s),
a sensor to detect TCP connection establishments that will
be used to infer connection chains (conn s), three sensors to
detect denial of service (DoS) attacks based on SYN, UDP
and ICMP flooding (sflood s, uflood s, iflood s) and, finally, a
response unit capable of producing packet filtering (pfilter ru).

The implementation of the host sensors is based on the
interception of some system calls with the purpose of obtaining
useful information in the search process of illicit or suspicious
activities. On the other hand, the implementation of the host
based response units uses the same idea to provide the needed
mechanisms to prevent the associated action related with the
step of the attack to avoid. We have finished the development
of a sensor to monitor the execution of programs (execve s),
a sensor to detect which processes want to be finished (kill s)
and a response unit able to kill and protect host processes
(kill ru).

B. Communication of Events and Actions

The sensors provide the events to each prevention cell an-
alyzer. On the other hand, the counter measure manager of
each prevention cell provides the actions to the response units.
As we already mentioned, sensors and response units work in
kernel space. The complexity of these components and the
limitation that supposes to work in a kernel scope entails
to design them as daemon processes in user space. Thus, a
specific communication mechanism between kernel space and
user space is needed.

Among the diverse alternatives for performing the com-
munication between kernel space and user space, we have

chosen the netlink sockets to bind the proposed sensors and re-
sponse units with the analyzers and counter measure managers.
Netlink sockets is a Linux specific mechanism that provides
connectionless and asynchronous bidirectional communication
links. Although the use of netlink sockets has been designed
with focus on implementing protocols based on IP services,
this mechanism can also be used as a standard interface to
perform communication between kernel modules and user
space processes. Netlink sockets allows us to use the well
known primitives from the socket treatment, providing us
transparency with the buffering mechanisms.

C. Analyzers and Managers

Both the implementation of the analyzer and the counter
measure components, as well as the other managers of each
prevention cell, are based on a plug-in mechanism to facilitate
the development and the maintenance of the different features
that these components will offer. Thus, through the use of
Netlink sockets, both the event watcher analyzer and the
counter measure manager will consume and produce infor-
mation.

To generate this information or to manage it, different plug-
ins will be enabled or disabled. Some of these plug-ins will
be launched in a multi-threading fashion. The event watcher
analyzer, for example, will launch the different plug-ins to
handle the events received from the sensors using this multi-
threading mechanism. This way, it is possible to parallelize
the gathering of the different events produced by the set
of sensors. Other plug-ins, such as the one responsible for
sending actions to the response units, the one responsible for
managing external alerts and transform them to internal alerts,
etc. will not need the use of this multi-threading mechanism
to perform its work.

D. Communication of Alerts

The communication between the analyzers and managers,
inside each prevention cell as well as between the other
prevention cells of our architecture, is performed by using
the Elvin publish-subscribe system [21]. Elvin is a network
communication product that provides a simple, flexible and
secure communication infrastructure. To be able to use the
infrastructure offered by the Elvin publish-subscribe system,
both, the analyzers and the managers of our implementation,
have been developed using libelvin and e4xx, two portable C
and C++ libraries for the Elvin client protocol. Additionally,
each host with a prevention cell lodged inside will run an Elvin
server to route all the alerts published inside each prevention
cell.

Finally, to share the cooperative alerts produced by the
different prevention cells in a secure multicast fashion, we
use the federation and reliable local-area multicast protocol
provided by Elvin and other interesting features offered by this
publish-subscribe system, such as fail-over and cryptographic
settings. By using SSL at the transport layer we guarantee
confidentiality, integrity and authenticity of the cooperative
alerts communicated between each prevention cell.



VII. CONCLUSIONS AND FURTHER WORK

We have presented in this paper a decentralized solution for
the detection and prevention of distributed and coordinated
attacks from network resources. This system uses a secure
multicast communication between different entities to avoid
their participation in a coordinated attack against third party
networks or even the local network. We have also outlined
how our system can detect and prevent the BIND Birthday
Attack, exploiting the distribution and coordination of the
system components. Then, we have briefly discussed the
implementation of a platform, which has been developed and
which implements the major part of the components of the
architecture previously proposed for GNU/Linux systems. Al-
though the detection and reaction components of this platform
(sensors and response units implemented as Linux modules)
are at this time developed only for Linux 2.4, we plan to
upgrade them to Linux 2.6.

As a further work, we are evaluating the possibility to incor-
porate the formal data model proposed in [18] in our approach.
We are also making a more in-depth study of the IDMEF
format [8] to solve unnecessary duplicated calculus inside each
prevention cell. Finally, we will incorporate intrusion tolerant
mechanisms to make our system more reliable when the host
that lodges a prevention cell is infected.

ACKNOWLEDGMENTS

We would like to thank Michael A. Jaeger for his comments
on early drafts of this paper.

The work of J. Garcia, J. Borrell, S. Castillo and G.
Navarro has been partially funded by the Spanish Government
Commission CICYT, through its grant TIC2003-02041, and
the Catalan Government Department DURSI, with its grant
2001SGR-219.

REFERENCES

[1] M. Asaka, A. Taguchi, and S. Goto. The implementation of IDA: An
intrusion detection agent system. In 11th Annual FIRST Conference on
Computer Security Incident Handling and Response (FIRST’99), 1999.

[2] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, Eugene H.
Spafford, and Diego Zamboni. An architecture for intrusion detection
using autonomous agents. In ACSAC 1998, pages 13–24, 1998.

[3] S. Benferhat, F. Autrel, and F. Cuppens. Enhanced correlation in an
intrusion detection process. In Mathematical Methods, Models and
Architecture for Computer Network Security (MMM-ACNS 2003), St
Petersburg, Russia, September 2003.

[4] F. Cuppens. Managing Alerts in a Multi-Intrusion Detection Environ-
ment. In 17th Annual Computer Security Applications Conference New-
Orleans, New-Orleans, USA, December 2001.
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