
Using an Intrusion Detection Alert Similarity
Operator to Aggregate and Fuse Alerts

Fabien Autrel et Frédéric Cuppens
GET-ENST-Bretagne, 35576 Cesson Sévigné (France)

An important problem in the field of intrusion detection is the management of alerts. Intrusion Detection Systems tend
to produce a high number of alerts, most of them being false positives. But producing a high number of alerts does not
mean that the attack detection rate is high. In order to increase the detection rate, the use of multiple IDSs based on
heterogeneous detection techniques is a solution but in return it increases the number of alerts to process. Aggregating
the alerts coming from multiple heterogeneous IDSs and fusing them is a necessary step before processing the content
and the meaning of the alerts. We propose in this paper to define a similarity operator that takes two IDMEF alerts
and outputs a similarity value between 0 and 1. We then propose some algorithms to process the alerts in a on-line
or off-line approach using this operator. The article ends up with experimentations made with the Nmap tool and the
Snort IDS.

Mots-clés: Intrusion Detection, Alert, Intrusion Detection Message Exchange Format, aggregation, fusion, Similarity

1 Introduction
Every IDS has its avantages and drawbacks respectively to the technique it makes use of in order to detect
attacks. Actually using only one IDS over a computer network will restrict the range of detected attacks.
Therefore using multiple IDSs is a solution to increase intrusion detection rate, each IDS compensating
the other IDSs’weaknesses. But making use of multiple IDSs raises some problems. First, the amount of
alerts generated is too important to be handled by a system administrator. Second, since some IDSs may
detect the same attack at the same time, information carried by the alerts are redundant. Hence it would be
convenient to be able to assess the similarity of two alerts, a similarity of 0 meaning “those two alerts are
not related to the same event” and a similarity of 1 meaning “those two alerts have been generated upon the
same event”. Once we are able to evaluate the similarity of two alerts, we can apply clustering algorithms
to a set of alerts in order to do on-line or off-line processing.

The remainder of this paper is organized as follows: section 2 presents previous work related to alert
agregation. Section 3 presents the problem of measuring the similarity of two intrusion detection alerts. We
present how we model the alerts and how we compare their attribute. This section ends by presenting the
way we aggregate the similarity values computed between the attributes of two alerts to produce a similarity
value. Section 4 presents the aggregation tool we have implemented and some experimental results. Finally,
section 5 conclude this paper and presents some ongoing work.

2 Related work
Some authors have investigated the alert aggregation problem and some solutions have been suggested. In
[VS01] Valdes and Skinner use a probabilistic approach where a similarity function is defined for each
attribute. They obtain an overall similarity value by combining similarity functions using an expectation of
similarity.

In [Jul03] Julisch proposes to build clusters of alarms minimizing the cluster dissipation given that its
size must be kept above a minimum number of alarms given by the user. In this case the analysis is done

Fabien Autrel et Frédéric Cuppens

off-line to determine the so called “root causes”, i.e. the most basic causes that explain the alarm clusters.
Julisch argues that these root causes are mostly configuration problems.

In [DW01], Debar and Wespi present the aggregation and correlation of intrusion detection alerts. Similar
alerts are aggregated through the use of duplicate definitions. A duplicate definition specifies the alerts that
should be observed when an event is detected. Namely, a definition specifies the alert A1 that should be
observed after another alert A2 and which attributes should match between A1 and A2. This approach allows
the authors to provide a fast implementation but cannot aggregate alerts that have no associated duplicate
definition.

In [Cup01], the author defines a logic predicate sim alert(Alertid1,Alertid2), that is true when two alerts
are similar. To evaluate this predicate, a set of expert rules must be defined to determine when two alerts
attributes are similar. The comparison of two attributes depends on the alerts classification, i.e the events
associated with the alerts. As in [DW01], this approach lacks the ability to aggregate alerts with an unknown
classification. We can add that for the two last approaches, it is not possible to quantify the similarity of
two alerts.

3 Intrusion detection alerts similarity
Intrusion detection alerts have multiple formats depending on the IDS generating it. The set of information
included in the alert also differs depending the on intrusion detection technique used. The set of information
associated with an alert is called its attributes.

The process of alert comparison consists in comparing the sets of attributes of two alerts. We need to
formally define this set of attributes in order to define the set of functions needed to compare two alerts
generated by two arbitrary IDSs.

It is important to note that this article does not deal with alert correlation as it is defined in [CM02] or in
[NCR02]. The aggregation process tries to group alerts by causes [Cup01], whereas the correlation process
tries to chain alerts in order to find scenarios of alerts (see also [MMDD02]).

3.1 Intrusion detection alerts modelling
Very few articles try to define a model for intrusion detection alerts. In [VS01] the authors represent an alert
as a set of features. In [Jul03] Julisch models an alert as a tuple over the Cartesian product X1<i<ndom(Ai),
A1,A2, ..,An being the set of attributes and dom(Ai) the values Ai can take.

The later model is the one chosen in this article. Note that the set of attributes that can be included into an
alert (an alert may include only a subset of all available attributes) is determined by the alert data format we
have chosen. We choosed the IDMEF alert data format [DC04]. Our motivation for choosing this format is
exposed in section 3.3.1.

We define a set E of events types that can generate alerts. The idea is to be able to associate an event and
a set of properties linked to this event to an alert. An alert can then be viewed as an instance of an element
of E.

3.2 Alert attributes comparison
In this section we expose the set of functions we need in order to be able to compare the attributes of two
alerts. We distinguish 4 types of attributes:

• Categorical attributes: discrete values without order (IP address, port number...)

• Numerical attributes: counters, packets size.

• Temporal attributes: different from numerical attributes because of some properties such as periodic-
ity.

• Character strings: arbitrary text data if not formatted.

detection interval

IDS5IDS4IDS3IDS2IDS1Attack occurence t

Fig. 1: Detection time interval for the occurrence of an attack

Each of the presented function returns a similarity value given two attributes, i.e they return a real in the
interval [0,1].

The existing alert formats have a subset of attributes in common. For example the source IP address, the
date of the alert, the number of the accessed port, etc... However some intrusion detection technique may
be able to add some extra information to a report. The IDMEF alert data format allows the IDSs to include
a wide range of information into the alert. We use this format because of its capacity to include data output
by various intrusion detection techniques. The attributes presented in this section are only pertaining to the
IDMEF format.

3.2.1 Time comparison

An intrusion detection alert can contain two different dates. It can either tell us when the event at the origin
of the alert has been detected or it can give the date at which the alert has been created. We make no
distinction between those dates and consider the alert creation time as the associated event detection time.

For each event type of E we define a time interval specifying the temporal window outside of which
executing another instance of the attack does not allow to say that those two events are related.

Computing the temporal window

To determine the similarity function parameters, we launch an instance of each event type in E on a
network monitored by IDSs employing as many different detection techniques as possible. Since our goal
is to aggregate alerts created by IDSs using different detection approaches, we must take into account
the fact that some detection techniques implementation might require more processing power than other
techniques. Hence such slower IDSs may generate their alert after other IDSs upon the detection of the
same event. After playing an event instance we obtain a set of alerts not necessarily raised at the same time,
depending on the processing power required by each IDS. We therefore consider the most recent and the
oldest DetectTime values in this set of alerts to compute a temporal interval (figure 1).

This temporal interval is useful for aggregation since we want to be able to aggregate alerts that have been
sent upon the occurrence of the same event instance. The idea is to separate alerts associated with the same
event type but not the same event instance. Such alerts should have time values outside of the detection
temporal window of the previous event instance. However two event instances may be in the same temporal
window. In this case some of the alerts associated with two event instances may be aggregated. This means
that an alert resulting from the fusion of a group of aggregated alerts may have greater granularity than
elementary alerts.

Actually we compute two temporal intervals. The first value is obtained by playing the event instance on
a network with no other traffic (Tmin) and the second value is obtained by playing the event instance on a
network with neutral traffic (Tmax). Generally (Tmax) is greater than (Tmin) since the neutral traffic analysis
slows down the IDSs and slows down the alert transmission on the network.

Computing the similarity value

Given two dates t1 and t2 and the temporal window corresponding to the alert event (see figure 2), the
similarity function fst is defined as follows:

Fabien Autrel et Frédéric Cuppens

Similarity

Time0 Tmin Tmax

1

Fig. 2: Similarity function for the DetectTime attribute

DMZInternet Intranet

Critical dataWeb server

FTP server

Non critical data

Firewalls

Fig. 3: Generic network configuration

IPi....

Firewall WWW/FTP

Any IP address

DMZ Extern

IPj+1 IPk IPk+1 IPl

IP1 IPi+1 IPj

Fig. 4: Example of IP address taxonomy

fst (t1, t2) =

1 if |t1− t2|< Tmin
Tmax−|t1−t2|

Tmax−Tmin
if Tmin < |t1− t2|< Tmax

0 otherwise
Comparing the dates of two alerts makes sense only if the two analyzers that generated the alerts are

synchronized, otherwise the similarity value might be lower or higher than expected. In the case of an
architecture where IDS alerts are collected by a specific module and then forwarded to other alert processing
modules, we expect this concentration module to correct the clock shifts.

3.2.2 IP address comparison

To be able to compare two IP addresses, we must think about the topology of a local network connected
to the internet. Generally the network has a protected LAN with a private server, a DMZ (DeMilitarized
Zone) with a public server and firewalls that add a layer of security between critical data and the internet
(see figure 3).

The comparison of two IP addresses must take into account the two machines locations in the network
topology. For example two addresses referring to two different sub-nets should be considered as less sim-
ilar than two addresses referring to the same subnet. It is also interesting to take into account the type
of machine associated with an IP address. This machine might be a web server, a DNS or a firewall. To
achieve similarity comparison of those information, we choose to use a taxonomy over the IP addresses.
This choice has been motivated by the work exposed in [Jul03]. The IP address taxonomy depends on the
network topology (figure 4).

Computing the similarity value

To compute the similarity value between two IP addresses, we compute the distance between the two IP
addresses in the taxonomy tree. The similarity value is then equal to the inverse of the maximal distance
minus the calculated distance.

655354915210244915110230

Dynamic and/or private portsWell known ports Registered ports

ANY-PORT

Fig. 5: Port numbers taxonomy

3.2.3 User data comparison
An alert may contain data about the user at the origin of an alert and/or about the user targeted by the action
at the origin of the alert. The data we have to compare is specified by the IDMEF UserId class.

The User class contains one or more instances of the UserId class, which encapsulates specific informa-
tion about a user or process. The UserId class contains interesting information about a user or a group,
namely its user or group name and number. We said in the introduction that string attributes are hard to use
since they often contains arbitrary formatted data. But in the UserId class, the user or group name is stored
as string attribute that can be used to compare two groups or users. However we should not compare a
group name with a user name since they have different semantics. To avoid such comparisons we just have
to check the type of data encapsulated by the UserId class Instance by looking at the UserId’s type attribute.

When comparing two UserId class instances, we first determine if the two “name” attributes represent
two groups or two users. If both of the two instances carry user information, we give a similarity value of 1
if the same user is represented, a similarity value of 0.5 if they belong to the same group, and a similarity
value of 0 if they do not belong to the same group. If both of the two instances carry group information, we
give a similarity value of 1 if the groups are identical and a value of 0 if they are different.

3.2.4 Process data comparison
The Process class aims at providing information about the process causing the alert (for the source) and
the one aimed by the event (for the target). In order to generate a similarity value, the most interesting
information in this class are the “name” and “pid” aggregate classes. We simply compare the values of two
instances of IDMEF alerts for those classes to give a similarity value of 1 if they are equal and 0 if they are
different. The arguments of a process are ordered so we calculate the similarity values between arguments
as defined in section 3 for ordered sets.

3.2.5 Service data comparison
The Service class provides information about network services running on sources and targets. The four
aggregate classes that make up Service are name, port, portlist and protocol. The name class raises a
problem since it is a string and that no obligation is given regarding its format. Moreover after having
looked at the output of some IDSs we could see that the “name” aggregate class is not used and even
sometimes the name of the service is stored in the “ident” attribute. It seems preferable to rely on the port
or portlist classes since they are just a number or a formatted list of numbers. The “protocol” aggregate
class is often used in the IDSs alerts we have looked at and seems to have no particular format. Hence we
can use a string comparison to produce a similarity value of 0 or 1.

To deal with service ports, we use a taxonomy over the ports numbers. We distinguish the three ranges
of port numbers: the Well Known Ports, the Registered Ports, and the Dynamic and/or Private Ports (figure
5). A similar taxonomy is defined in [Jul03]. A set of ports is considered an unordered set.

Two other aggregate classes are part of the Service class: the WebService and SNMPService classes.
They carry additional information related to Web traffic and SNMP traffic.

• The WebService Class: Four aggregate classes make up this class (url, cgi, http-method and arg).
They are all string of characters. Here string comparison is applied, hence similarity values of 1 or 0
are obtained. Since the arguments passed to the CGI scripts are separated in multiple strings, we can

Fabien Autrel et Frédéric Cuppens

get a similarity value between 0 and 1 for the list of arguments if multiple arguments are used in the
request. As for the process class, the arguments of two CGIs are ordered.

• The SNMPService Class: Three aggregate classes are part of this class. They are all string values and
represent the object identifier in the SNMP request (oid), the object’s community string (community)
and the command sent to the SNMP server (command). String comparison is applied here, hence we
get 1 if strings are equal and 0 otherwise.

3.3 Similarity values aggregation
By applying the set of similarity functions on two intrusion detection alerts, we obtain a set of similarity
values. In order to compute a final similarity value between the two alerts, we have to define how to
aggregate those values. The first natural idea is to use the mean operator. This aggregation mode is however
not desirable since somme attribute, for a given event type, may be more important than another one. For
example, in the case of a spoofed source address, the similarity between this spoofed address and a real
address is not significant.

The IDMEF data format is not just a set of alert attributes but also provides an object-oriented representa-
tion of the set of alert attributes. Attributes are organized in classes and form a class hierarchy. We propose
to aggregate the similarity values calculated between the alert attributes by respecting this class hierarchy
and we propose to associate a weight to each class and class attribute.

3.3.1 IDMEF alert structure
IDMEF alerts are represented by XML documents. Since XML cannot represent class subclassing, only
aggregation relationships are defined between classes in the IDMEF model. An IDMEF alert can be repre-
sented by a graph, more precisely a tree, where nodes are IDMEF class instances or class attributes. For a
more in-depth explanation of this alert format, refer to [DC04].

Note that some aggregation relationship, like the one between the Alert class and the Source class, allow
to have an arbitrary number of class instances for the aggregated class. Hence we must handle the case
where, for example, the two compared alerts do not have the same number of instances for the Target class.
More generally we have to compare two sets of attributes not having the same number of elements.

3.3.2 Weighting the similarity values
As we said in section 3.3, some alert attributes are more significant than others given the event type asso-
ciated to the alert. In order to take in account this, we associate a weight to each class type in the IDMEF
data model.

3.3.3 The similarity operator
As we mentionned in the previous sections, in order to obtain a similarity value between two alerts, we must
calculate the similarity values between the alerts’attributes and aggregate them to obtain a final similarity
value. In our approach the two processes are done in parallel. Let us start with some definitions.

• Let E be the set of event types that can create alerts (an alert is associated to the instance of one of
those types). If we consider the snort IDS for example, E will be the set of events detected by the set
of snort rules. We add to this set the unknown event type mapped to the alerts that cannot be mapped
to a known event.

• Let T be the set of attribute and class types.

• Let Fs be the set of similarity functions, each function being associated to one attribute or class type.

• Let type(V) 7→ T be the function returning an attribute type given an IDMEF alert vertex.

• Let p : T × T ×E ×E 7→ R be the function returning the weight associated to the similarity value
resulting from the comparison of two vertexes. Note that this function returns the default weight
associated to an attribute type if the two alerts’associated events are not of the same type.

Node

STRING ident
ENUM category

Location

name

Address

0..1

0..1

0..*

Fig. 6: IDMEF Node class structure

0..*0..1

ident location Addresscategory

class attributes aggregated classes

0..1
name

Node

Fig. 7: IDMEF Node class represented as a tree

Comparing two IDMEF class instances

As we said above, we compute and aggregate the similarity values between the attributes of two alerts
at the same time. In section 3.2 we presented some functions to compare the most important attributes in
the IDMEF data model. Before exposing how we browse the alert structure when comparing two alerts, we
explicit how to compare two IDMEF class instances. Figure 6 shows the structure of the Node class, we
take this class as an example to illustrate the comparison of two arbitrary IDMEF classes.

Generally, a class instance of the IDMEF data model has a set of attributes (ident and category for
the Node class), and a set of aggregate class instances (location, name and Address for the Node class).
The set of aggregate class instances can have a variable number of instances since the cardinality of some
aggregation relationships are not fixed. This set can be splitted up in subsets of class instances grouped by
class types. Hence, comparing two instances of the same class consists in:

• comparing their attributes as ordered sets (attribute number n in the first set will be compared with
attribute number n of the second set, which implies that both of them are instanciated).

• comparing the two sets of aggregate class instances by comparing their subsets by pairs of the same
type.

When comparing two subsets of aggregate class instances of the same type, two situations can arise:

• the two subsets are not ordered, like for example a list of IP addresses. In this case each element of the
first subset will be compared with all the elements of the second subset. Then obtaining a similarity
value in [0,1] is done by dividing the result by the number of comparisons made between the two sets.
However, we want the comparison of two sets of instances to have some properties. Namely, when
we compare a set SC of instances of a class C with itself, we want to have Sim(SC,SC) = 1. If we
compare those two equal sets by comparing each element of the first set with all the elements of the
second set, and then dividing the sum of those similarity values by the number of comparisons done,
we might have Sim(SC,SC) < 1. This will occur if some elements of SC are not similar. To avoid this
problem, when we are computing the similarity value between two sets SC1 and SC2, we keep for each
instance of SC1 compared with an instance of SC2 the highest computed similarity value. The same is
done when comparing the instances of SC2 with those of SC1. The following equation explicits what
we said above:

Simunordered(SC1,SC2) =
1

|SC1|+ |SC2| {
|SC1|
∑
i=0

max j∈{1,|SC2|}(fsm(SC1[i],SC2[j]))

+
|SC2|
∑
i=0

max j∈{1,|SC1|}(fsm(SC2[i],SC1[j]))}

where SC1[i] is the ith instance of class C of set SC1 and fsm is the similarity function to use to compare
instances of class C. This way of comparing two sets of unordered instances of the same class ensures
that we get a similarity of 1 when comparing two equal sets.

Fabien Autrel et Frédéric Cuppens

• the two subsets are ordered, like for instance the arguments of a process in the Process class. In this
case when comparing two ordered subsets with the same cardinality, we compare the nth element of
the first subset with the nth element of the second:

Simordered(SC1,SC2) =
1

|SC1|
|SC1|
∑
i=0

fsm(SC1[i],SC2[i])

When the two subsets do not have the same cardinality, we consider the two subsets as unordered and
apply the previous definition.

Aggregating the similarity values

Computing the similarity value between two instances of the same IDMEF class consists in aggregating
the similarity values computed between the instances of its attributes (basic types and abstract types). The
similarity values are ponderated using the weights associated with the event attached to the compared alerts.
Those weights are selected thanks to the p function. We aggregate the similarity value recursively, by
starting from the top node in the XML tree of two alerts (the Alert class). The formula for computing the
similarity value between two instances C1 and C2 of the same class is given below:

Sim(C1,C2) =
1

∑
k

pk

{
S1︷ ︸︸ ︷

n

∑
i=0

pi fsi(attribute1i ,attribute2i)+

S2︷ ︸︸ ︷
∑

a∈NO(C1),b∈NO(C2)
pNOab ×Simunordered(a,b)+

S3︷ ︸︸ ︷
∑

a∈O(C1),b∈O(C2)
pOab ×Simordered(a,b)

}

S1 represents the comparison of class attributes (basic types) instanciated in C1 and C2, ponderated by
their weight pi. S2 represents the comparison of the subsets of instances of unordered attributes of the same
type (aggregate classes). NO(C) is the set of unordered subsets of attributes instances of an instance of the C
class. pNOab is the weight associated to the type of compared attributes. S3 represents the comparison of the
ordered sets of aggregate class instances of C1 and C2, O(C) being the set of subsets of ordered attributes
instances of the C class. As for the unordered case, pOab represents the weight associated to the type of
compared class instances. In S2 and S3, a and b represents subsets of attribute instances. ∑

k
pk is the set of

weight used in the calculus. It allows us to obtain a similarity value in [0,1].

4 Experimentation
Our experimentation on our implementation of the aggregation tool consisted in playing some Nmap com-
mands on a computer monitored by a Snort IDS. We did not define any event in the E set, so default weights
have been used to ponderate the similarity values between the alerts attributes. Tmin and Tmax defined in 3.2.1
are set respectively to two and ten seconds. The aggregation tool is written in C++ and we are currently
writting a Java version.

Nmap [Fyo] is a free tool which can be used to explore networks. It allows to efficiently scan a large
number of IP addresses and to get various information. Actually Nmap can determine, among other infor-
mation, the operating system of a computer, the names and the versions of running services and the installed
firewalls. This tool can be used by a system administrator to quickly gather some information from the sys-
tem he manages, but it can also be used by an attacker. Actually an attacker can gather information about
potential targets to identify some vulnerabilities that could be exploited to start an intrusion scenario.

We used two target computers monitored by a Snort probe and executed the same Nmap command at the
same time on both computers. We made this choice to see if the aggregation tool is capable of separating
the alerts concerning the two computers.

We used the following Nmap commands:

• Nmap -sO: This command allows to identify the protocols used by a machine. Nmap sends IP packets
without protocol header to the target machine on all possible protocols. When executing this com-
mand, Snort generated 3776 alerts in 120 seconds. After aggregating and fusioning the information
inside each cluster to obtain one alert per cluster, we have 64 clusters. The first 32 clusters concerns
the first target, and the 32 other the second target. The two sets of 32 clusters have the same composi-
tion, so we only analyse the 32 clusters concerning the first target. This confirms that the aggregation
tool could separate the alerts depending on the target.

Among the 32 clusters, around ten clusters have a size ranging from 30 to 400 alerts. Inside those
clusters, the maximum time gap between two alerts is 10 seconds. For those clusters, the alert clas-
sification is the same and correspond to the BAD-TRAFFIC Unassigned/Reserved IP protocol event.
Those alerts are generated because some IP packets are sent with an invalid protocol number. This
number is expressed with 8 bits, so Nmap generates packets using the 256 possible values.

The other clusters have a smaller size, ranging from 1 to 6 alerts. All the alerts inside a cluster have
the same classification and the time gap does not exceed 2 seconds. For each of those clusters, the
associated event corresponds to IP packets which have been sent with a reserved protocol number.
The following classifications appear in those clusters: BAD-TRAFFIC IP Proto 55 IP Mobility, BAD-
TRAFFIC IP Proto 103 PIM, BAD-TRAFFIC IP Proto 77 Sun ND and BAD-TRAFFIC IP Proto 53
SWIPE.

Hence, we have been able to isolate the punctual events drowned into a set of alerts corresponding
to the use of invalid protocols. Moreover after fusing the informations inside each cluster, we get 64
alerts, one alert per cluster, which take 104Kb. The 3776 original alerts take 3Mb.

• Nmap -sS: this command executes a port scan by sending SY N packets on each port to know if it is
open. If the port is open, a SYN-ACK is received. Otherwise a RST packet is recieved. Executing
this command generates 3 alerts. The gap between the first and the last alert is one second, the Snort
IDMEF plugin doesn’t seem to produce alert timestamps more precise than one second. The 3 alerts
are aggregated together given the fact that the time gap is low, the source and target IP are the same
and the source and target port numbers are identical. Moreover the target ports are part of the ”well
known” ports (see 3.2.5 for the port numbers taxonomy). After fusing the cluster, we get one alert
with one source address, one target address, one source port and a list of 3 target ports.

Those two examples shows that the aggregation tool we have developped has an acceptable behaviour
for the two tests we conducted. This is satisfactory since we did not have to configure it. We are currently
modifying the tool to connect it to an alert database to enhance the cooperation capabilities of this module.

5 Conclusion
Based on the fact that using multiple IDSs in a computer network environment is a good solution to increase
intrusion detection rate, we proposed a framework to reduce the number of alerts to create more synthetic
alerts. The approach adopted consists in calculating a similarity value for each attribute belonging to two
alerts. However our approach is generic concerning the alert data format, provided that alerts can be rep-
resented as trees. We choose the IDMEF data format because it is supported by several IDSs. Whereas in
[Jul03] the alert aggregation is done off-line, we propose to process alerts in an on-line or off-line approach.
The on-line alert processing can be integrated into a more sophisticated alert processing flow, the fusion
alert can be forwarded to a correlation module for instance. In [Cup01] similarity relations are defined as
logic predicates. However using similarity relations and no real similarity value raises a problem: an alert

Fabien Autrel et Frédéric Cuppens

may be similar to two other alerts, that are not similar. In our approach each alert is associated with only
one event instance. We have presentes some experimentation with the Aggregator tool which implements
our approach. The tests conducted with the Nmap tool show the benefit of alert aggregation but confirms
the need to process the fusion alerts after the aggregation module. The experimentation also shows that
defining weights for some event types is necessary. This needed work can be used when installing the fu-
sion module in another network. We have implemented a correlation module which follows the principle
exposed in [BAC03]. Experimental results showing the two chained modules in action will be presented in
a forthcoming article. We think that our approach can also be interesting to aggregate clusters of alerts gen-
erated by our tool instead of only aggregating alerts sent by IDSs. As exposed in [Jul03], some alert clusters
may be related to some configuration problems that produce bursts of alerts. Some of those problems are
occuring at fixed intervals and thus have a property of periodicity. We think our approach can be interesting
in this case by processing the alert clusters, created by aggregating the IDSs alerts, using different similarity
functions. Namelly, the temporal similarity function can be modified to compute similarity values based on
some periodicity property. This approach will be exposed in a forthcomming paper.

References
[AFV02] D. Andersson, M. Fong, and A. Valdes. Heterogeneous sensor correlation: A case study of

live traffic analysis, 2002.

[BAC03] S. Benferhat, F. Autrel, and F. Cuppens. Enhanced correlation in a intrusion detection
process. In In Mathematical Methods, Models and Architecture for Computer Network Secu-
rity (MMM-ACNS 2003), St Petersburg, Russia, September 2003, 2003.

[CM02] F. Cuppens and A. Miège. Alert correlation in a cooperative intrusion detection framework.
In In Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 202-215,
Oakland, USA, May 2002.

[Cup01] F. Cuppens. Managing alerts in a multi-intrusion detection environment. In 17th Annual
Computer Security Applications Conference (ACSAC’01), 2001.

[DC04] H. Debar and D. Curry. The IDMEF format. Available at:
http://www.ietf.org/html.charters/idwg-charter.html, 2004.

[DW01] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts. In Recent
Advances in Intrusion Detection, Proc. 4th Int’l Symp., RAID, 2001.

[Fyo] Fyodor. Nmap free security scanner. http://www.insecure.org/nmap/.

[GHH+01] Robert P. Goldman, W. Heimerdinger, Steven A. Harp, Christopher W. Geib, V. Thomas, and
Robert L. Carter. Information modeling for intrusion report aggregation. In DISCEX, 2001.

[Jul03] K. Julisch. Using root cause analysis to handle intrusion detection alarms. Phd Thesis, 2003.

[MMDD02] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2d2: A formal data model for ids alert
correlation. In RAID, pages 115–127, 2002.

[NCR02] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing intensive intrusion alerts via correla-
tion. In RAID, pages 74–94, 2002.

[VS01] A. Valdes and K. Skinner. Probabilistic alert correlation. Lecture Notes in Computer Science,
2212:54–68, 2001.

